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The linear temporal stability of incompressible semi-bounded inviscid parallel flows 
over passive compliant walls is studied. It is shown that some of the well-known 
classical results for inviscid parallel flows with rigid boundaries can, in fact, be 
extended in modified form to passive compliant walls. These include a result of 
Rayleigh (1880) which shows that the real part of the phase velocity of a non-neutral 
disturbance must lie within the range of the velocity distribution; the semi-circle 
theorem of Howard (1961) and a result of Hailand (1953) which places a bound on 
the temporal amplification rates of unstable disturbances. The bounds on the phase 
velocity and the temporal amplification rates of unstable two-dimensional disturb- 
ances provide useful guides for numerical studies. 

The results are valid for a large class of passive compliant walls. This generality 
is achieved through a variational-Lagrangian formulation of the essential dynamics 
of wall motion. A general treatment of the marginal stability of thin shear flows over 
general passive compliant walls is given. It represents a generalization of the analysis 
given by Benjamin (1963) for membrane and plate surfaces. Sufficient conditions for 
the stability of thin shear flows over passive compliant walls are deduced. The 
applications of the stability criteria to simple cases of compliant wall are described 
to illustrate the use and the effectiveness of these criteria. 

1. Introduction 
Historically, interest in the stability of flows over compliant walls can be said to 

have begun with the pioneering experimental work of Kramer (1960). In a series of 
experiments conducted in Long Beach Harbour, California, Kramer reported that 
by coating his streamlined models with a special compliant coating he was able to 
achieve a dramatic reduction in the total drag on the models. Reductions of up to 
60 % over rigid models of equivalent displacement were obtained. Kramer attributed 
this reduction in the drag to a delaying in the transition of the boundary layer to 
a state of turbulence. Kramer’s fundamental thesis was that the compliant response 
of his coating and the viscous dissipation within the coating had damped out the 
Tollmien-Schlichting instability waves which are known to be the precursor of 
boundary-layer transition over rigid surfaces. The quest for drag reduction has 
remained ever since a prime motivation for subsequent studies, experimental and 
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theoretical, by other investigators. The reduction in self-noise attendant upon the 
suppression of flow turbulence is another practical incentive. 

An important part of our understanding of the fundamental aspects of the stability 
of the coupled flow-wall system stems from the earlier theoretical studies, notably 
those of Benjamin (1960, 1963) and Landahl (1962) among others. The theoretical 
study of Benjamin (1960) revealed that the stability problem of the interaction 
between the flow and the wall is far more complex than Kramer had initially 
envisaged. Benjamin found that the Tollmien-Schlichting waves are stabilized by 
compliant wall response but destabilized by viscous dissipation within the wall. This 
latter discovery ran counter to Kramer’s hypothesis. In addition to the Tollmien- 
Schlichting instability, Benjamin’s study also uncovered the existence of other 
instabilities ; those that are associated with the resonant modes of the compliant wall 
and a Kelvin-Helmholtz-type instability. Unlike the Tollmien-Schlichting instabi- 
lity, these latter instabilities can exist even when the flow is inviscid. And it is the 
instabilities that can arise from the interaction between an inviscid flow and a passive 
compliant wall that is of principal concern here. By the adjective passive is meant 
a wall which does not possess within itself any source of energy which may be a cause 
of instability. Inviscid flows over a compliant wall may also suffer from another 
instability which assumes the form of a slowly travelling instability wave. This is 
frequently termed the static divergence instability. Recently Carpenter & Garrad 
(1986) considered an example which indicates that the static divergence instability 
may well be an absolute instability, that is, a temporal instability having zero group 
velocity. 

A useful energy-related classification of the instabilities that may arise from the 
interaction of the flow and the compliant wall was introduced by Benjamin (1963); 
drawing upon the work of Landahl (1962). In this scheme, the instabilities, termed 
Class A, Class B or Class C, are characterized by the sign of the energy needed to 
activate or excite the initial disturbances. In  the case of Class A waves, they require 
the extraction of energy from the initially unperturbed system for activation 
and are consequently destabilized by dissipation. The Tollmien-Schlichting-type 
instability and the static-divergence instability fall within this class. Class B 
instability has the opposite characteristics. Instabilities associated with the resonant 
modes of the compliant walls are normally Class B and are stabilized by dissipation 
in the wall. The stability of these waves is determined by the net effect of irreversible 
processes which include dissipation and the transfer of energy by non-conservative 
hydrodynamic force generated by the critical-layer mechanism of Miles ( 1957). Class 
C instabilities, on the other hand, are those which involve mainly conservative 
transfer of energy from the flow to the wall so that the total energy of the system 
remains virtually unchanged - more correctly the activation energy because the total 
energy is always reduced by dissipation. The Kelvin-Helmholtz type of instability 
is a prime example of Class C instability. 

Much of the early theoretical analyses were carried out on simple wall models such 
as those of membranes and plates. More recently a class of compliant walls modelled 
as plate supported on an elastic foundation and backed by a liquid substrate (inviscid 
and viscous) was studied by Carpenter and co-workers. The model is purported to 
represent the principal mechanical attributes of the Kramer walls and has been 
employed by them to study the possible stability performance of the original 
Kramer’s walls; see Carpenter & Garrad (1982, 1985) for examples. The stability of 
inviscid parallel flows over an elastic or viscoelastic layer backed by a rigid base was 
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also recently studied by Duncan, Waxman & Tulin (1985), Evrensel& Kalnin (1985) 
and Fraser & Carpenter (1985) among others. We will not go into a more complete 
discourse of the existing literature on inviscid flows over compliant walls. Instead 
due references to the works of other investigators will be made in the main text a5 
and when they are relevant. The very recent article of Carpenter & Garrad (1986) 
and the further references contained therein are strongly recommended to those who 
wish to seek a more complete overview of the subject. 

One aspect of the subject which appears to have been largely neglected in the 
literature is the examination of the status of the various classical theorems, which 
are an integral part of the linear stability theory of inviscid parallel flows with rigid 
boundaries, in relation to compliant walls. The studies known to the authors are those 
of Chin (1979) and Callan & Case (1981). Callan & Case concluded that most of the 
classical results cannot be carried over to compliant walls with the possible exceptions 
of the Rayleigh’s inflexion-point theorem and Fjrartoft’s theorem, both of which hold 
under very restrictive requirements on the boundary condition at the flow-wall 
interface. Their overall conclusions are not shared by the present authors and in this 
paper we establish that some of the important classical results can indeed be extended 
to passive compliant walls in modified form. Chin (1979) presented some analyses of 
the Rayleigh equation for the special case of flow over flexible membranes. His result 
will be subsequently discussed. 

A crucial term which recurs frequently in this paper is 

€3 43*lsa-0, (1 .1)  

where €, and q3 are respectively the complex amplitudes of the vertical perturbation 
traction applied by the flow to the wall and the vertical displacement of the flow-wall 
interface (the meaning of the terms should become clearer in the main text). 
Superscript * denotes complex conjugation. This term is clearly related to the transfer 
of work at the flow-wall interface and is henceforth referred to herein as the 
work-transfer term. It embodies the essential ingredients of the interaction between 
the flow and the wall. In  $2 we describe a general representation of the work-transfer 
term (1.1) in terms of certain characteristic quantities of the wall for the class of 
disturbances of the travelling-wave type that is admitted by the problem. A 
variational-Lagrangian approach to the derivation of the required representation 
which is applicable to a large class of passive compliant walls is outlined. To motivate 
the form of (l . l) ,  we begin $2 with another approach applied to a single-hyer 
viscoelastic wall. The approach, which amounts to the derivation of the energy- 
balance equation for the wall from its governing equations, can also be generalized 
to other types of compliant wall, but its formal generalization is less convenient. 

Given the general representation for the work-transfer term at the flow-wall 
interface, $3 establishes three propositions which constitute the extensions of three 
classical results to passive compliant walls. The three classical results in question are, 
a result of Rayleigh which states that the real phase velocity c, for an unstable 
disturbance must lie in the range of U(x3),  the two-dimensional velocity profile; the 
semicircle theorem of Howard (1961) and a result of H d a n d  (1953) which places a 
bound on the temporal amplification rates of unstable disturbances. The validity of 
the extensions only requires that the relevant characteristic integrals of the wall (a 
kinetic-energy integral, a potential- or stored-energy integral and a dissipation 
integral) be positive and this is naturally fulfilled by most passive compliant walls 
subject to small initial equilibrium stresses. The bounds on the phase velocity provide 
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useful guides for numerical studies by narrowing down the domain in the complex 
c-plane where unstable eigenvalues may exist. A simple application of the bounds on 
the real phase velocity c, is considered in $4. 

In $4, the theory developed in $02 and 3 is applied to the consideration of the 
stability of thin shear flows over passive compliant walls in general. Conditions of 
marginal instability which represent a generalization of the analysis given by 
Benjamin (1963) for membrane and plate surfaces are briefly described. Sufficient 
conditions for marginal stability (in the context of linear theory) which assume the 
form of a free-wave criterion and a static criterion are also deduced based largely upon 
well-established variational principles. The generality and the usefulness of these 
criteria are illustrated for simple compliant wall models. The results obtained accord 
well with those of Carpenter and co-workers and others. Comparisons with recent 
experimental results on turbulent flows over compliant walls are made. 

2. A general description of wall motion 
Figure 1 shows an inviscid semi-bounded shear flow over a passive compliant wall 

which is composed of a single layer of viscoelastic material backed by a rigid base. 
The standard coordinate frame (x,, x,, z3) employed here is a right-handed Cartesian 
frame which has the positive 2,-axis pointing in the streamwise direction from left 
to right. The unperturbed surface of the wall spans the (x,, 2,)-plane and the positive 
2,-axis is outwardly normal to the surface. The compliant wall is subject to a 
two-dimensional sinusoidal travelling wave perturbation having a 2,-wavelength of 
A( = 27r/a) where a is the z,-wavenumber of the perturbation. The amplitude of the 
wave is assumed to be an infinitesimal fraction of the wavelength but has been 
exaggerated in figure 1 for expositional clarity. 

The primary objective of this section is the derivation of a generalized represen- 
tation of the work-transfer term ( 1 . 1 )  which is valid for a large class of passive 
compliant walls. To begin with, the computation of the work-transfer term is 
illustrated for the case of the single uniform layer of viscoelastic material shown in 
figure 1.  The form assumed by the work-transfer term is then generalized to other 
compliant walls via a variational-Lagrangian formulation. For simplicity of notation 
we assumed that the quantities of the walls are defined in the same lengthscale and 
velocity scale as the external flow. The density of the fluid flow is taken to be the 
reference density for both. 

2.1. A single-layer viscoelastic wall 

The non-dimensional local equations of motion for the wall layer in the absence of 
body forces are given by 

piji = a,,,j (i = 1,2 ,3) ,  (2-1) 

where p is the density of the wall relative to flow density, q = ( ~ , , y , , q , ) ~  is the 
displacement vector of a Lagrangian or material coordinate frame and [at,] is the 
stress tensor. Each dot above q denotes the partial derivative a/at  with respect to 
time. Here the summation convention for repeated subscripts or superscripts is 
assumed and ( ),, denotes partial derivative of ( ) with respect to 2,. The assumption 
of zero body forces holds throughout the paper. Equations (2.1) can be multiplied 
by 4: and combined to give 
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Inviscid parallel flow 

FIQURE 1. Inviscid parallel flow over a passive compliant wall. 

where [et,] is the linear strain tensor. The superscript * stands for complex conju- 
gation. The integration of (2.2) over the volume V spanned by one wavelength h 
of the disturbance in the x1 direction and unit width in the x2 direction and 
the application of the divergence theorem yield 

L L 

where n = (n l ,  n2, n3)T is the unit normal to the boundaries. 
For 'almost reversible' deformation in a material with viscous damping, the 

constitutive relation between the stress tensor and the strain and strain-rate tensors 
has the general form (see $34 of Landau & Lifshitz 1970) 

utj = 'tjkl 'kl + dtjkl  ikl 7 (2.4) 

where [crjkl] and [drjkl] are fourth-order elastic modulus and viscosity tensors. Both 
[Ci jk l ]  and [dtjk,] are real and have the usual symmetry properties. In  general, they 
are a function of frequency. The substitution of (2.4) into (2.3) gives 

The real part of (2.5) is the energy-balance equation associated with the propagating 
disturbance over one wavelength of the wall. 

By the linearity of the governing equations for the disturbances in both the flow 
and the wall layer, and the geometry of the problem, the displacement vector field 

= (ql, q2,  q3)T has a separable x1 travelling wave solution of the form 

?j = d t )  $j(% x2, x3),  (2.6) 

where $j = x(xl) $j('3) (j = ' 9  2, 3), 

q(t) = e+" (w = a c ) ,  x(xl) = eiaz1, 

and $,(x3) is the x8 dependent complex amplitude of the displacement component 7,. 
In the case of temporal stability the x1 wavenumber a is real while w and c are, in 
general, complex. There is instability when wt is positive. 
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Using (2.6), the time-dependent strain tensor can be factored as 

'kl  = q e k l )  ( 2 . 7 ~ )  

where ek l  = f ( $ k ,  + $1, k ) .  The surface-traction vector t = ( t l ,  t , ,  t3)T, given by 

ti = V,j nj, (2.7b) 

has the separable form t = q x ? .  Substituting (2.6) and (2.7) into (2.5) yields, after some 
algebraic manipulation, 

where 

i r  

I P  

( 2 . 8 ~ )  

(2.8b) 

( 2 . 8 ~ )  

(2.8d) 

The subscript w denotes evaluation at x3 = 0. 
In (2.8) the integral I is real and positive. The integrals E and D are real because 

of the symmetry properties of the tensors [c t jkl]  and [d&. D the dissipation integral 
will be positive because the integrand is a positive-definite quadratic form pro- 
portional to entropy production. The integral E, which is a measure of the average 
stored energy in the layer, will also be positive if the tensor [ c t j k l ]  is defined with 
reference to the 'natural state' of zero stress. The terms on the left-hand side of ( 2 . 8 ~ )  
have precisely the form of the work-transfer term (1. l) ,  and we shall also refer to them 
as work-transfer terms. 

The above derivation of (2.8) can be extended to cases consisting of any finite 
number of uniform viscoelastic layers. Provided continuity of displacements and 
stresses exists across the interfaces between adjacent layers, the boundary terms of 
adjacent layers at their common interfaces cancel. The domain of integration of the 
integrals I, E and D is then extended to cover all the relevant layers, and the 
boundary term E, fjflZ8-+ in (2.8) is replaced by evaluation at the lower surface of the 
last layer. 

2.2. A variational-Lagrangian formulation 
The derivation of (2.8) can be easily generalized to other types of compliant walls 
by adopting a variational-Lagrangian formulation for the dynamics of the wall. The 
usual starting point for such a formulation is the well-known Principle of Virtual 
Work of classical mechanics (see Washizu 1982). An important extension of this 
principle to cover irreversible thermodynamics was developed under the name of the 
Principle of Virtual Dissipation by M. A. Biot. This principle gives a more complete 
treatment of internal material dissipation. A comprehensive account of the principle 
and its applications to various continuous dynamical systems is given in the recent 
article of Biot (1984). Sections 12 (on viscoelastic solid) and 18 (on linear thermo- 
dynamics near equilibrium state) are of particular relevance to the generalization we 
seek. The finer points of the principle need not concern us here because of the 
assumed absence of any thermal effects and we shall only require the final result 
in the form of the Lagrangian equations. 
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Let q = qv and its complex conjugate q* = q*v* be the solutions of the wall 
motion. Assuming that q and q* are solution functions, q and ,q*, both functions of 
time, can be treated as independent generalized variables. Calculus of variation 
method can then be applied via the mentioned principle to show that q and q* satisfy 
the following Lagrangian equations of motion 

(2.9a) 

(2.9b) 

where 9, Q and 9 are respectively the average kinetic energy, the average potential 
or stored energy and the average dissipation integrals per unit length of the wall in 
the 2,-direction. For quasi-reversible processes about an equilibrium state, the 
dissipation integral 9 has the form 

(2.10a) 

where Dv is a positive-definite quadratic form in the strain rates (gk& (or other 
appropriate deformation rates) such that 

(2.10b) 

where [a&] is the viscous stress tensor associated with material viscous dissipation 
(see Biot 1984, $12). The generalized mechanical forces & and &* on the boundaries 
are given by 

(2.11) 

The subscript r denotes the real part. 

2.3. Applications of Lagrangian generalization 
We can now apply the Lagrangian formulation to derive (2.8) and we begin with the 
single-layer viscoelastic wall of figure 1. For this case, the kinetic energy integral F 
is given by 

The stored energy density is given by &i,kl(c&(ckl)r and the integral Q is 

(2.12) 

(2.13) 
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The local dissipation function Dv is obviously !jddt,kz(it,)r(ikz)r so that the integral LB 
is 

I f  

= Sq*D. 

and the generalized force &* is given by 

(2.14) 

&* = M i  %Iz*-o+ft 7i?1z3--hL (2.15) 

where &* is the complex conjugate of &. The substitution of (2.12)-(2.15) into (2.9b) 
yields (2.8) identically. The quadratic forms in terms q and q* or Q and a* assumed 
by the integrals F, 4 and 9 are of the forms given in (18.17)-(18.19) of Biot (1984). 
They are completely general and we can indeed use (2.12)-(2.14) as the basis t o  define 
the integrals I ,  E and D. 

The analysis can also be extended to include incompressible inviscid or viscous fluid 
sublayers which have null basic velocity field (the topmost layer in contact with the 
flow being a solid layer). Let u = (u,, us, u3)T = 4 ( t )  (ykl, ykz, $3)T be the Eulerian 
perturbation velocity field of a viscous fluid layer of viscosity ,u occupying a region 
V, extending over one wavelength h in the x,-direction. For an incompressible flow, 
the stored energy over one wavelength is zero in the absence of body forces. The 
integrals F and 9 are as given below 

(2.16a, b )  

where iij =a(ui, + uj, t ) .  The corresponding quantities I and D are 

2 
p$, $: dV, D = -LB = ’ Jv, et, e;dV, (2.17a, b)  

2 I = - Y = -  
QQ* qq* h 

both of which are positive. 4 and hence also E are zero for an incompressible fluid. 
We next go on to a frequently used idealized compliant-wall model of an elastic 

plate on a damped-elastic foundation as shown in figure 2, where m is the mms per 
unit area of plate surface, M is the mass moment of inertia about neutral axis, R is 
the flexural rigidity, k, is the foundation elastic constant, rSs = kFq3 and kp is the 
foundation damping constant, UL = kp$3. Equation (2.8) also holds for this 
compliant wall with I ,  E and D given by 

(2.18a) 

(2.18b) 

D = +kJq3I2. (2 .18~)  

Again we note that I ,  E and D are also positive real quantities. 
In general, the work-transfer term a t  8, in (2.8) is zero for passive compliant walls 

that are terminated below by an interface on which either the displacements or the 
stresses or a combination of both are zero. Henceforth, we shall always use (2.8) with 
only the work-transfer term at x3 = 0, the other term being assumed to be zero. 

2.4. Other remarks 

A Lagrangian representation of the wall dynamics had been used before by Benjamin 
(1963) as part of a more complete Lagrangian representation of the interactions of 
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FIGURE 2. Thin plate on a damped elastic foundation. 

a pair of coupled dynamical systems. It was within this larger Lagrangian framework 
that Benjamin (1963) developed his three-fold classification of the instabilities. The 
uses to which the Lagrangian representation for the wall dynamics are put in the 
present study are, however, entirely different from those of Benjamin (1963) who had 
as his primary aim the illustration of the very general nature of his classification. His 
terms p, h and K correspond respectively to our I, E and D. He assumed his 
quantities p, h and K to be constants in his analyses, although it is not clear if the 
assumption is strictly necessary. Our equivalents, the I, E and D are, of course, in 
general, functions of both c and a. For the more specific case of a membrane surface, 
Benjamin (1963 j reverted back to non-Lagrangian treatment. 

The general approach outlined in the two preceding sections shows that (2.8) 
applies to a wide category of passive compliant walls. These essentially consist of 
those passive walls which admit separable solutions of the travelling-wave form as 
given by (2.6). The quantities I and  D are always positive and real. E will necessarily 
be positive when the elastic properties are assumed to be specified with reference to 
the natural state of zero stress. However, most systems in initial equilibrium are 
subject to some initial stresses. Initial stresses can be induced by body forces such 
as gravity for example, or boundary forces exerted by the basic flow. The presence 
of a significant initial stress state can theoretically make E negative because the 
elastic moduli tensor [ c ~ , ~ ~ ]  need no longer be positive-definite. In  the majority of 
wave-propagation problems, the initial stress state is customarily ignored or assumed 
to be inconsequential because of the great simplicity it affords to analyses. The 
omission is normally justifiable when the initial stress state is much less than the order 
of the material moduli. Cases with significant initial stress state are of very limited 
interest and relevance to the study because they do not, in general, admit separable 
solutions of the kind given by (2.6). Plane-wave solutions exist only in very special 
circumstances where the initial stress and deformation fields are homogeneous (see 
Eringen & Suhubi 1975, chapter 4). Hereinafter, E will be assumed to be greater than 
zero for non-trivial perturbations unless otherwise indicated. 

3. The extension of the classical theorems 
In  the last section, the work-transfer term E,$ was found to assume a common 

form, as given by (2.8), for a large class of passive compliant walls. In the present 
section, the work-transfer term at the flow-wall interface is related to the perturbation 
quantities of the flow domain. Three main propositions are proved. 
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Inviscid flow 

Compliant wall 

FIGURE 3. Flow-wall interface. x = (q, 0,O) ; d*) = (q, 0, q3), coordinate of interface; 
,dL) = (zp), 0, 0), material coordinate of dt). 

3.1. The Rayleigh equation and the boundary conditions at the juid-wall  interface 
Let U(x,) be the basic velocity distribution of a two-dimensional incompressible 
inviscid parallel flow over a compliant wall as shown in figure 3. Let EU = (eul,  0, E U , ) ~  

be a two-dimensional perturbation of the basic flow, where E is a small real quantity. 
If @ = eidzl-ct) q5(x3) = q(t)  ~(z,) q5(z3) is the disturbance stream function such that 

u, = u3 = -@ 9 1' (3.1) 

then the complex amplitude q5(z3) of the disturbance satisfies the well-known 
Rayleigh equation (see Drazin & Reid 1981) 

(U-c)(qS'-a2q5)- UNq5 = 0, ( 3 4  

where the superscript denotes the derivative with respect to x3, d/dx,. The Rayleigh 
equation (3.2) together with (i) q5+0 as x3+co ,  and (ii) the interface boundary 
conditions a t  the wall can be posed as an eigenvalue problem. In the case of temporal 
stability considered here, a is real and c( = c,+ici) is complex. The coupled system 
of flow and wall is deemed to be unstable when ac, > 0 implying exponential growth 
in time. The system is said to be neutrally stable when c, = 0. 

The interface boundary conditions are the continuity of normal velocity and stress 
at the interface. The continuity of normal velocity is given by (see figure 3) 

~ t j ( , ( ~ ) * n  = (Ui l+eu)1p*n ,  (3.3) 

where i ,  is the unit basis vector of the z1 axis and n is the unit normal to the displaced 
interface at  x(I) = (z,, 0, ell3). The direction of the normal is given by the vector 

where the superscript (L)  is used to denote the material coordinate frame employed 
for the wall. When E is very small, Taylor's expansion of (3.3) about x yields to order 

q 3 + 3  all u-u, = O(E), 
ax1 

(3.4) 

at x = (x,, 0,O). The substitution of (2.6) and (3.1) gives 
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where we note that the subscript w denotes evaluation at x3 = 0. By continuity, the 
perturbation stresses acting on the interface can be similarly linearized about x to 
give 

$ 3 3 1 ~  = -$w 

= ( ~ w - c ) $ ; - ~ ; $ w ,  (3.6) 

where $? is the complex amplitude of the pressure perturbation p in the flow. There 
are no shear stress terms because of the inviscid nature of the flow. Equation (3.6) 
is obtained from the linearized 2,-momentum equation for the perturbation. Using 
(3.6) and (3 .Q the work-transfer term 

where it is noted that n, is 1 + O ( B ) .  
Having established the relation between the work-transfer term and the flow 

perturbation quantities at the flow-wall interface at  x3 = 0, we can now proceed to 
extend the classical results. 

3.2. The propositions 
The proofs of the propositions follow that of the rigid-wall case. The important 
difference is that in the case of compliant walls, the boundary terms that result from 
the integration by parts need not be zero. The boundary term at x, = 00 can normally 
be disregarded because admissible disturbances are assumed to vanish there. The 
presence of a non-zero boundary term at x, = 0 renders the classical results invalid 
for compliant walls. The crucial step in extending the results in a modified form to 
compliant walls is the identification of this boundary term with the work-transfer 
term at x3 = 0. 
PROPOSITION 1. For an unstable wave, the real phase velocity cr must satisfy 

and 

The bounds on c, hold even when E is negative. 
In  proving the inequality in (3.8), we let 

Umin = min [ U(z,)], Urnax = max [ U(z,)] .  
Xa za 

f=- -4  
( U - c ) ’  (3.9) 

The Rayleigh equation (3.2) may be expressed in terms off as 

[(U-c)2f’]’-a*(U-c)2f= 0.  (3.10) 

Multiply (3.10) by f* and integrate over the flow domain from x, = 0 to x, = 00. 

Integration by parts yields 

(3.11) 
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because by equation (3.9), f(o0) = $(a) = 0. In the case of rigid boundary f w  is also 
zero and the right-hand side is zero. From (3.9) and (3.7), the work-transfer term at 
x3 = 0 is 

fj$Iw = - f W w - C ) Y & .  (3.12) 

Using (3.12) and (2.8) in (3.11), we obtain 

lom ( U - C ) ~ K ~ ~ ~  = -a2c21+E-iacD, (3.13) 

where K(x, )  = ~ ( ~ f ' ~ 2 + a 2 ~ f ~ 2 )  is positive-definite. The real and imaginary parts of 
(3.13) are respectively 

and 

J [ ( U - C , ) ' - C : ] K ~ X ~  = -a2(c:-ccf)I+E+aciD, 

2ci jOw ( U -  c,) K dz, = 21a2c, ci + ac, D .  

0 

Multiply (3.15) by $z to give 

(ccci)jorn ( U - c , ) K d x ,  = Ia2c,(aci)++a2c,D. 

(3.14) 

(3.15) 

(3.16) 

The proof of the proposition can be obtained by an inspection of (3.16). We first 
consider the case for which U,,, is greater than zero so that U ,  = Urn,,. Since I and 
D are real and positive, it  follows immediately that for unstable waves, for which 
aci > 0, c, must not be greater than Urn,, to avoid contradiction in (3.16). If 
Urn,, < 0, a contradiction of sign will again arise in (3.16) if c, 2 0. Thus for unstable 
waves, c, must be less than max [ Urnax, 01. An essentially symmetrical argument 
shows that c,  is bounded below by min [ Urnin, 01. This proves the proposition. Since 
the term E, which is related to the stored energy, is not present in (3.16), the bounds 
on c, also apply to cases with significant initial stresses, for which E may be negative. 

In  the case of a rigid wall, there are no right-hand-side terms in (3.16). When 
mi + 0, c, must necessarily lie in the range of U(x3)  ; a result first noted by Rayleigh. 
The bounds in Proposition 1 differ from those of the rigid-wall case. For a compliant 
wall, there can exist unstable modes with c, < Urnin when Urnin is greater than zero. 
An example that springs readily to mind is that of uniform flow over a compliant 
wall with Urn,, = Urnin greater than zero. The rigid-wall result of Rayleigh applies 
identically to the compliant-wall case only when Umin and Urn,, are of opposite signs 
or when at  least one of either is zero. It is easy to deduce from the inequalities (3.8) 
that for unstable waves over passive compliant walls 

IcrI < max[IUrninl, lurnaxll. (3.17) 

The next proposition is a modified extension of the semi-circle theorem of Howard 

PROPOSITION 2. For an unstable wave, the phase velocity c satisfies 
(1961) to compliant walls. 

[c,-$(u,+ uL)I2+c:  < [+(u,-U~,)l~, (3.18) 

where U ,  and U ,  are as dejned in Proposition 1 .  
To prove the above proposition, we note that 

(3.19) 
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because K is positive-definite. Also from (3.14) and (3.15), we have 

277 

and 

Iom UKdx, = IomcrKdx3+aacrI+- a2cr D 
2aci ’ 

a21cl 2D Iom VKdx, = joW ~ ~ ~ ~ K d x , + a ~ ~ c ~ ~ I + E + - .  
mi 

(3.20) 

(3.21) 

There are three cases to be considered, namely: 

Case 1 : Umin Q 0 and Urn,, 2 0, 

Case 2 : Umin > 0 and Urn,, > 0, 

Case 3 :  Urnin < 0 and Urn,, < 0, 

A reductio ad absurdurn type of argument is used to show that the inequality (3.18) 
holds in all the cases. 

Case 1 : Umin < 0 and Urn,, 2 0. 

For this case UL = Umin and U ,  = Urn,,. Assuming (3.18) to be false, then its 

(3.22) 

negation can be arranged in the form 

lcl2-Cr(urnin + Urnax) + Umin Urnax 2 0. 

The substitution of (3.20) and (3.21) into (3.19) yields 

r m  

Da2 
aci 

The first two terms of (3.23) are positive by virtue of the assumption (3.22) and the 
fact that Umin Urn,, < 0. From the inequality (3.22), we have 

+-[IC12-$r(umin+ um,x)]+E < 0. (3.23) 

ICl2-%r( Urnin+ Urnax) 2 t[Umin(cr- Urnax) + Urnax(cr-UmidI, (3.24) 

the right-hand side of which is greater than zero by Proposition 1. The third term 
of (3.23) is hence positive. Since the fourth term E is also greater than zero, the sum 
of terms on the left-hand side of (3.23) is greater than zero leading to a contradiction 
with the right-hand side. The inequality (3.18) must therefore be true. 

Case 2:  Umin > 0 and Urn,, > 0. 

For this case UL = 0 and U ,  = Urn,,. The negation of the inequality (3.18) may 
be simplified to 

ICI2-Cr Urnax 2 0. 

Equation (3.23) can be recast as 

(3.25) 
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The first two terms of (3.26) are positive by (3.25). Since c, is positive by Proposition 
1, the third term of (3.26) is also positive by (3.25). Since 

I,” (umax-U)KdZ, 2 0, 

the use of equation (3.20) shows the fourth term of (3.26) is also positive. The sum 
of the terms on the left-hand side of the inequality (3.26) is therefore greater than 
zero in contradiction with its right-hand side. The inequality (3.18) is thus true for 
this case. 

Case 3: Urnin < 0 and Urn,, < 0. 

The argument for this case is closely similar to that for Case 2, but we shall illustrate 
it for completeness sake. In this case U ,  = Urnin and U ,  = 0. The negation of the 
inequality (3.18) has the form 

lc12-c, Umin 0. (3.27) 

Either of (3.23) and (3.26) can be rearranged to give 

Do12 

aci 
I,” [lc12-c, urnin] ~ds,+1a2[1c12-cr umin1+-[1c12-&c, urnin1 

+ Urn,, [ locn ( Urnin - c,) K dx, - la2c, - - Da2cr]+E 2ac, < 0. (3.28) 

The first two terms of (3.28) are positive by (3.27). The third term is positive by (3.27) 
and Proposition 1 .  Since 

rcn 

the use of (3.20) shows that the fourth term is also positive. A contradiction hence 
arises in (3.28), and the inequality (3.18) must therefore be true. This completes the 
proof of Proposition 2. 

As in the case of Proposition 1, the inequality (3.18) coincides with the original 
semicircle theorem for unstable waves when Urnin and Urn,, are of opposite signs or 
when either of Urnin or Urn,, is zero. In  the other cases where Urnin and U,,, are of 
the same sign, the semicircle theorem of Howard is contained within the semicircle 
prescribed by (3.18); which has a radius of $(Uu- U,) and centred a t  $( U ,  + U,) on 
the real axis of the complex c-plane. 

We now prove the last proposition which gives a bound on the temporal 
amplification rate aci for basic velocity distributions which vanish a t  the wall. 
PROPOSITION 3. For a basic velocity projle with U,  = 0 ,  the temporal amplijcation 

rates aci of the unstable waves satisfy 

aci < max [lU‘(~,)l]. (3.29) 

To prove this proposition, as in the rigid case (see Drazin t Howard 1966), we let 

9 = $/(U-c)4 (3.30) 

za 

where $ satisfies the Rayleigh equation (3.2). Substitution into (3.2) yields 

(3.31) 
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Multiply (3.31) by g* and integrate with respect to z, from 0 to 00. Take the imaginary 
part and further multiply by cf to give 

~ m [ a a c ~ - ( ~ ) z ] ~ g ~ z d z , + c ~ ~ m  0 lg’lzdz, = -ci Im[cgkgg]. (3.32) 
0 

Here Im ( ) denotes the imaginary part of ( ). Since ci < lU-clz, (3.32) implies that 
Q, 

[ a z ~ , 2 - ~ m a ~ [ l ~ ( z s ) l z l l ~  1g12d~s < -ci Im[&gzl. (3.33) 

Using (3.30) and (3.7), the boundary term can be related to the work-transfer term, 

z3 0 

(3.34) 

The use of (2.8) and (3.34) in the inequality (3.33) finally results in 

The right-hand side of this inequality is less than zero for unstable waves, and 
therefore the inequality (3.29) holds. 

In  the rigid-wall case, the right-hand side of (3.35) is zero. The rigid-wall result 
was first established by Hrriland (1953). Although the above propositions have been 
proved for a semi-bounded fluid domain, they are also, nevertheless, true when the 
flow is bounded above by a rigid boundary. 

An alternative derivation of Propositions 1 and 2 employing the generalized 
Lagrangian-Mean formulation of Andrews & McIntyre (1978a, b) for the flow is 
outlined in Yeo (1986). 

3.3. On other classical results 
Having established the three propositions, we go on to consider the status of the other 
well-known classical results in relation to passive compliant walls. Of particular 
interest to us are those results that bear upon the roles of inflexion point in the basic 
flow profile. We shall confine ourselves to the simple case for which there is only one 
inflexion point. 

The central role of inflexion point in the stability of parallel inviscid flows over rigid 
boundaries is epitomized by the famous inflexion-point theorem of Rayleigh (see 
Drazin & Reid 1981) which states that the existence of an inflexion point in the 
velocity profde is a necessary condition for flow instability. Equivalently, its absence 
is a sufficient condition for stability in the context of linear theory. When the 
boundary terms resulting from wall compliance are included, it is clear that this 
elegant result no longer holds. Flows deemed to be stable by Rayleigh’s theorem are 
usually unstable when the boundary is sufficiently soft. From this generally, we see 
that wall compliance is destabilizing to inviscid flows. By the same token, Fjrrrtoft’s 
( 1950) stronger extension of Rayleigh’s inflexion-point theorem is also invalid. 

For monotonic velocity distributions, such as boundary-layer-type profiles over 
rigid wall, the critical point x, = z, (where c = U(z,)) of a neutral mode can only occur 
at an inflexion point of the velocity distribution (see Lin 1955 or Drazin & Howard 
1966). This is not the case in - general for passive compliant walls. For a neutral mode, 
the Reynolds stress T~ = - u1 us associated with the disturbance in the flow is 

T~ = &Z Im (#*#’), (3.36) 
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and T~ is constant except at the critical point 2, where it suffers a discrete jump in 
its value of 

(3.37) 

from below to above the critical point (see Drazin & Reid 1981). The subscript c 
denotes evaluation at z3 = 2,. Since T~ must vanish a t  z3 = a0 , for monotonic profiles 
the jump a t  2, must be equal to the Reynolds stress developed a t  the mean position 
of the wall at z3 = 0. From (3.36), (3.7) and (2 .Q 

Upon using (3.37) and (3.38), we have 

(3.38) 

(3.39) 

which shows that for monotonic velocity distributions over passive compliant walls 
with non-zero dissipation ( D  + 0 ) ,  the critical points of neutral modes cannot be 
points of inflexion. The exception being for the static case of ac = 0. Tollmien’s proof 
of the existence of unstable modes associated with inflexion points cannot, therefore, 
be extended to passive compliant walls with non-zero dissipation. This is not, 
however, to say that the existence of an inflexion point is not sufficient for instability. 
In  fact, the evidence is that flows of monotonic velocity distribution with inflexion 
point(s) over dissipative compliant walls are always unstable. And it appears very 
likely that the existence of an inflexion point in flows with monotonic velocity profile 
is sufficient for instability. 

The possible extension of classical results to general compliant walls was briefly 
investigated by Callan & Case (1981). They failed to obtain any really concrete results. 
On using the assumption that gW/& is real, they found that Rayleigh’s inflexion 
theorem holds, and if further $w/q5k is negative as well, then Fjsrtoft’s theorem is 
also valid. These results, however, seem to be rather artificial because q5w/q5k cannot 
realistically be assumed to be real for the two mentioned theorems which apply to 
non-neutral states. From (3.7) and (2.8) q5w/q5& may only be real for neutral modes 
on non-dissipative walls ( D  = 0). For neutral modes, however, both Rayleigh’s and 
Fjsrtoft’s theorems are not applicable. For the more specific compliant surface of a 
flexible membrane, Chin (1979) showed that the original semicircle theorem of 
Howard (1961) holds provided a certain inequality is satisfied. The inequality 
involves Urnax, Umin and parameters of the surface. When Urn,, and Urnin are of 
opposite signs, the said inequality is satisfied and his result is therefore consistent 
with our own modified semicircle theorem. 

4. Applications 
In this section, we apply the results of the preceding sections to derive general 

marginal stability criteria for thin shear flows over passive compliant walls with 
non-zero dissipation. The thin shear flow we have in mind is that which is a uniform 
flow with a very thin boundary layer over which the flow velocity U(z,)  increases 
from zero at the undisturbed interface a t  x3 = 0 and approaches the free-stream 
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velocity U ,  asymptotically. The boundary-layer thickness is assumed to be much 
less than the disturbance wavelength. The presence of the thin boundary layer 
enables non-conservative transfer of energy from the basic flow to take place when 
the disturbance wave is neutrally stable. Applications of the stability criteria to 
specific classes of compliant walls are also considered. 

4.1. The stability of thin shearJEows 

From (3.7) and (2.8) we have 

where (4.1 6) 

The superscript (n) indicates that the quantity denoted has been normalized by flQ31;. 
I#("), I@)  and D(") are in essence 2E, 21 and 2 0  respectively calculated over the 
time-independent displacement vector field yt which has vertical displacement of unit 
amplitude at z, = 0. The stress amplitude 6,,1, acting on the wall may be calculated 
from the integral of the x,-perturbation momentum flow equation to give 

Equation (4.2) is the general stability equation for inviscid parallel flow over a passive 
compliant wall. To use (4.2), it is necessary to know how q5 varies with a and c. For 
thin boundary-layer flow which has boundary-layer thickness much less than the 
wavelength of the disturbance, the small-a approximation of Drazin & Howard 
(1962) to q5 may be employed, 

co 
q5 = Ae-axs X ajH,(z3),  (4.3) 

5-0 

where A, a complex constant, and the H5 are determined by the boundary conditions 
on 9. It is not necessary to go into the details of how to find these quantities here. 
It suffices for our purpose merely to note that (4.3) is a uniformly valid small-a 
approximation of $ for a semi-bounded flow, and when the condition at infinity is 
applied, the al-approximation is given by 

q5(x3) = A(U-c)e-aZs { l+a Ix; [ ( g y - ' ] d x " )  (4-4) 

This equation is identical to (7.3) of Benjamin (1959) which was fundamental to his 
task of calculating the boundary stresses induced by thin shearing flows over 
sinusoidal wavy surfaces. For the determination of neutral and near-neutral eigen- 
states of (4.1), we may thus adopt Benjamin's approximation to &331w, which is given 

for an inviscid flow; see also Benjamin (1963). Equation (4.5) is an approximation 
of 2,,Iw for a neutrally stable disturbance wave in a thin boundary-layer flow valid 
for small values of a. In  this approximation 2,,1, is immediately recognizable as the 
sum of the pressure perturbation in the uniform part of the flow and the out-of-phase 
contribution arising from the singularity at the critical point. 
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While being strictly an approximation for neutral modes, (4.5) may be employed 
for the study of incipient instability in the neighbourhoods of neutral states. The 
substitution of (4.5) into (4.1) yields a quadratic polynomial equation in c, 

c 2 ( a P  + 1 ) + c(iv - 2 U ,  ) + ( UZ, - a- lE(")) = 0, ( 4 . 6 ~ )  

where (4.6b) 

Equation (4.6) governs the marginal stability of inviscid thin shear flow over a passive 
compliant wall. When c( = c, + ic,) is complex with a very small imaginary part, the 
terms Uh and U; in (4.6b) may be evaluated at the critical height z, given by 
U(z,) = c,. Since E("), I(") and are all real, it  is immediately obvious from (4.6) 
that v must necessarily be zero for a neutral wave with the possible exception for 
the case when c = 0. For very thin boundary layers, 4, can be approximated by (7.25) 
of Benjamin (1959) 

with A x ?j I w  and e-OrZc x 1.  The substitution of (4.7) into (4.68) shows that the 
vanishing of v for neutral eigenstates is equivalent to the constancy of the Reynolds 
stress T~ between the wall and the critical height, which earlier led to (3.39). 
Equations (3.39) and (4.6b) with v = 0 are merely statements of energy conservation 
showing the balance between the non-conservative transfer of energy from the basic 
flow to the perturbation and its dissipation by the wall; being the average rate 
of work done on unit area of the wall by the flow. Because of the nature of the 
approximation for ?331w, (4.6) is applicable in the vicinity of neutral states and is 
consequently useful only for the determination of marginal stability conditions. 

We now consider the stability implications of the marginal stability equation (4.6), 
which is valid for a large class of passive compliant walls. For a given wavenumber 
a, if c is an eigenvalue of the stability equation (4.6), then c must be at least one of 
the following two roots c1 and c2 of (4.6),  

9, = A ~ ( U , - C ) ~  e-azc/U:, (4.7) 

where 

(2 U ,  -A) - i( v - B )  
2(a1(")+1) ' 

c1 = 

(2157, +A) - i( v + B )  
2(aI((")+ 1)  ' c2 = 

A = g(r+a)i, B = sgn (v)g(r-a)i 

(a-ib)! = A-iB, 

a = 4a-1E(n)(al(n)+1)-~2-4401U2,1(n), b = avu,. 
r2 = a2+b2, 

( 4 . 8 ~ )  

(4.8b) 

It is clear from (4.8) that (q), < (c2),, (cl), < U ,  and (c2), > 0. The wall quantities 
E("), I(") and D(") are evaluated at the phase velocity c. 

4.2. General stability and instability criteria for passive compliant walls 
The conditions of stability or instability me usually obtained by analysing the 
imaginary parts of the roots of c. In the present case, we find that Proposition 1 of 
the last section may also be used to give sufficient conditions for stability. 

By Proposition 1, a disturbance wave with c, < 0 or c, > U ,  cannot be unstable. 
In particular, since we are concerned here only with marginal or threshold instability, 
there is no neutral state with c, < 0 or c, > U ,  which is the limit-point (usual 
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mathematical meaning) of unstable eigenstates; for otherwise it would imply the 
existence of unstable states with cr < 0 or c, > U,. Neutral states with c, < 0 or 
cr > U,, if they do exist are necessarily isolated from the unstable states and are 
consequently not marginal states as such. Thus to determine a condition or criterion 
for marginal stability, we merely need to find the condition under which the phase 
velocity c of neutral states cannot occur in the closed interval [0, U,]. To ensure that 
the c do not lie in the interval for marginally stable states, we require that 

c, c 0, c, > u,; (4.9a, b )  

noting that c, < c,. At a given a, these inequalities are equivalent respectively to the 
following criteria for marginal stability, 

(4.10a, b)  

For closer comparison with the results of Benjamin (1963), we investigate the 
stability in the more conventional way by examining the imaginary parts of the roots 
of c given in (4.8). For the root cl, there will be instability for v > 0 when V, > E(@/a ,  
which is Class A in Benjamin's (1963) classification. And it is not possible to have 
v < 0 because then U, < E@)/a ,  and c, must be less than zero. If c1 < 0, there is 
no critical point and v cannot therefore be less than zero. For the root c,, there will 
be instability when v < 0; termed Class B by Benjamin. However, v can only be less 
than zero when c,  < U ,  and for this we need VZ, > E(n)/(azI(n)).  Obviously Class B 
instability can usually be suppressed by making sufficiently large so that v 
becomes positive. This can, however, have the undesirable effect of destabilizing the 
Class A modes for which v > 0 is required for instability. When a in (4.8) is negative, 
( c , ) ~  = (c,),. There is then strong instability (termed Class C in Benjamin's 
classification) which sets in quite independently of the value of v when Ivl is small, 
as it must at incipient condition. The condition for Class C instability is a < 0 which 
implies that Vm > E(")/a+Bn)/(a21(")). This is normally not a crucial condition for 
incipient instability LW the comparison with the onset conditions for Class A and Class 
B instabilities will show. It is the only class of instability that occurs in uniform flows 
over non-dissipative compliant walls. In  summary, the conditions of instability 
corresponding to those discussed by Benjamin (1963) are, for 

ClassA: Pa>-, v > O ,  
a 

Class B : Vw > dlelc", , v > 0, 

EC") ' 

Class C:  VZ! > -+-, 
a 

(4 .11~)  

(4.11b) 

(4.11~) 

where v is assumed to be very small in all cases. The quantity v is directly related 
to Benjamin's net rate of irreversible energy conversion dE/dt by 

(4.12) 

Equations (4.1 1) give the conditions for instability for thin-boundary-layer flows over 
passive compliant walls. The above treatment generalizes that of Benjamin (1963) 
for tensioned membranes and shows more clearly the roles played by the character- 

10 P L Y  183 
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istic quantities E("), Z(n) and D(") of the wall in determining the onset of instability. 
For any specific wall, the actual onset of instability can only be worked out with a 
knowledge of the basic velocity distribution as well as the properties of the wall. 

For idealized passive compliant walls such as those of tensioned membranes and 
plates on damped elastic foundations, E("), I(") and D(") have no dependence on the 
phase velocity c. For these walls, the marginal stability equation (4.6) yields only two 
eigenvalues for each value of wavenumber a. More generally, E("), Z(") and D(") have 
c-dependence which cannot be ignored. Such dependence on c usually results in an 
increase in the number of c-eigenvalues of (4.6) and this makes the study of stability 
more difficult. Also, any sufficient condition for stability must be able to take account 
of the multiplicities of eigenvalues. By the inequalities in (4.10), which are 
consequences of Proposition 1, there is no incipient instability when 

' a 2 P ( a ,  cz) I ' VZ, < min (E(")(a, cl) E(")(a, c2) 

ClrCP a 
(4.13) 

where c1 and c2 vary over the eigenvalues of (4.6). However, (4.13) is quite useless 
as a stability criterion because the spectra of the c-eigenvalues are not normally 
known. If they were, there would be no problem to solve. 

A simple way to determine a stability bound on U ,  is to consider instead the 
minimization of the functionals E(")/a and E(")/(a21(")) with respect to the relevant 
classes of admissible displacement fields. Hence, for any given a,  we may rewrite the 
bounds on U ,  as 

(4.14) 

where c1 and y2 belong to the appropriate classes of admissible displacement fields. 
The inequality in (4.14) will normally represent a more stringent bound on U ,  than 
(4.13) because the classes of admissible fields considered are, in general, larger than 
the class of eigenfunctions of the stability problem. In this form, it turns out that 
the minimum values of the functionals may be determined from well-established 
variational principles of solid mechanics as we show below. 

To deduce the bound given by min,p{E~n~/(a2Z(n))} we note that 

(4.15~) 

is the free-surface-wave eigenvalue problem for a non-dissipative compliant wall. The 
admissible displacement fields in this case are required to satisfy the necessary 
continuity and differentiability properties and prescribed geometric boundary con- 
ditions. By the Principle of Stationary Potential Energy (see for instance Washizu 
1982), w2 is an eigenvalue of (4.15~) if and only if wz is a stationary value of the 
quotient 

(4.15b) 

The minimum value of (4.15~) is hence an eigenvalue of the free-wave eigenvalue 
problem. For a given wavenumber a, the minimum value of E(")/Z(") is the square 
of the lowest fundamental frequency which occurs with the wavelength A( = 2n/a) 
and we denote this lowest frequency by 0,. The minimum value of E(n)/(a2Z(n)) is 
c: where w, = ac,. The quantity c, is merely the lowest free-surface wave speed for 
2,-travelling waves with wavenumber a for the wall with an artificially enforced 
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absence of dissipation. It is important to note that the dissipative quality of the wall 
plays no role in the above minimization of E(")/(a21(")). 

We next consider the minimization of E(")/a and we begin by noting that +AE(") 
is the potential or stored energy in one wavelength of the wall corresponding to the 
admissible time-independent displacement field = y(a,  c ) .  An admissible solution 
here is one which has the necessary continuity and differentiability properties and 
which satisfies the boundary conditions of the wall. By the Principle of Minimum 
Potential Energy (see Washizu 1982, 52.1 or Fung 1965), the value of AE(") is 
minimum for the unique admissible displacement field which corresponds to the 
solution of the problem of static equilibrium for the wall. The static problem in 
question may be taken to be the one which has a specification of unit-amplitude 
sinusoidal vertical displacement (corresponding to the imposed normalization 
14,1 = 1) and zero shear stress a t  2, = 0. In this case E(") = 2E. At the bottom of the 
compliant wall, we may have, depending on the case examined, either a specification 
of zero displacements or zero stresses or a combination of both. The unique solution 
of the static equilibrium problem is none other than the solution of the dynamical 
eigenvalue equation (4.1) in the limit as c+O. Since I(n) and D(") must tend to zero 
as c+O, we are left with 

(4.16) 

and we denote the minimum value min,l{E(n)/a} by E p ) / a .  
For a given a, a sufficient condition for the marginal stability of thin shear flows 

over passive compliant walls, in the context of linear stability theory, is hence given 

UZ, < min E p ) / a ,  c: }. (4.17) 

Equivalently, the negation of the inequality in (4.17) is a necessary condition for 
marginal instability. In a strict sense, the criterion in (4.17) is valid only for small 
values of the wavenumber a because the assumption of small a is implicit in the 
approximation to 8,,1, given by (4.5). The above derivation of the bounds on U ,  
also sheds some light on the physical nature and the origin of the bounds. Comparison 
of the inequality (4.13) or (4.17) with the generalized criteria for instability in (4.11) 
indicates that the bound on U, by c: corresponds precisely to the suppression of Class 
B instability, Similarly the bound on UZ, by Ein)/a provides the necessary safeguard 
against Class A instability. In fact the sufficient condition for stability (4.13) could 
just as well have been deduced from the general criteria for instability by applying 
the necessary negations and reversing the implications. The use of Proposition 1 to 
derive the sufficient condition, however, does seem to be more straightforward and 
easier. The bound Pa < c: implies that there can be no Class B instability at 
wavenumber a when the lowest free-surface-wave speed of the wall (discounting 
dissipation) at the same wavenumber is greater than the free-stream velocity. From 
(4.16), it  is obvious that the bound by E p ) / a  = AEp)/ (2x)  is merely an assertion that 
there is no Class A instability when the wall is sufficiently stiff statically. From (4.16), 
E p ) / a  is a measure of the vertical static stiffness of the wall to sinusoidal vertical 
stress distribution of wavelength A. We shall refer to this static bound as the static 
criterion for stability and the other criterion as the free-wave criterion. 

static free-wave 
criterion criterion 

{ 
by 

10-2 
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4.3. Elastic plates on damped elastic foundations 
To deduce sufficient condition for the stability of thin boundary-layer flows over 
plates on damped elastic foundation we need to find the quantities E(") and P). These 
can be obtained from (2.18) after due normalization. Using (2.18) and (4.1), 

EP) Ra4+kF Ra4 + kF , c: = -- - 
a a mae ' (4.18) 

where we have neglected the mass moment of inertia term M for reason of algebraic 
simplicity. At wavenumber a, the sufficient condition for stability is hence given by 

(4.19) 

To extend this criterion over the widest possible range of a, bearing in mind the 
small a assumption, we can determine the minimum values of the terms in (4.18). 

has a minimum value of 

and c: has a minimum value of 

- (kFR)f  2 at a = (%y. 
rn 

The sufficient condition for stability for all a is thus that 

(4.20) 

The sufficient condition U, < (2/m)(kFR)4, which is the safeguard against Class 
B instability, is identical with that derived by Carpenter & Garrad (1986) for their 
travelling-wave-flutter (TWF) instability of thin boundary-layer flows over elastic 
plates on non-dissipative foundation (see their equation (3.7) for T = 0). In  our case, 
it is not necessary to assume zero foundation damping. Indeed if there were to be 
no damping at all, the jump in Reynolds stress at the critical height z, for the marginal 
state must be zero according to (3.39). The requirement of zero jump drastically 
restricts the possible values of c that a marginal state can have. This explains why 
in Carpenter & Garrad's case, the stability boundary is marked by c = U ,  ; that is 
in the free stream where U" = 0. 

The other part of the stability criterion U, < 4(k$ R/27)f is also the same as that 
obtained by Carpenter & Garrad (see their equation (2.13)) for static divergence 
instability of uniform flow over the same wall in the presence of wall dissipation. 

The above example clearly demonstrated the effectiveness of the very general 
stability criterion (4.17) derived in the last section. 

4.4. Single-layer viscoelastic isotropic walle 
As the next example, we determine the sufficient condition for the stability of an 
isotropic viscoelastic layer of thickness h perfectly bonded onto a rigid base. For 
simplicity, the material is assumed to be incompressible and to have a Voigt- 
deviatoric response to shear (see Bland 1960). The complex shear modulus is 
G, = G-iiwd, where G = p q  is the elastic/storage modulus and p is the density of 
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the material relative to the flow density. The quantity d is the material damping 
coefficient, and as has been noted before, d has no direct role in determining the 
bounds on U,. 

By its very definition, c, is determined by the elastodynamic characteristics of the 
wall. When the free-wave dispersion relation is known, c, is the smallest c-eigenvalue 
of the relation at the wavenumber a. The free-wave dispersion relation for the wall 
can be found by solving the dynamic-wave-propagation problem for the wall, having 
set the material damping to zero, subject to zero surface traction along z, = 0. When 
d #= 0, the free modes are all damped. The free-wave dispersion relation of the form 
given in (4.15a) is generally only useful for numerical computation purposes when 
there is some pre-knowledge of the mode shapes. For the single-layer wall in question, 
the dispersion relation required for the determination of c, is given by 

where 

4h'b~ H 
Za(4hab$+Hg) tanhh tanhbT-ZbT(4Z4++)+ = 0, (4.21) 

cosh h cosh bT 

Z = ah, H = (Za+b$),  b$ = ha 1 -- ( ;I- 
In (4.21), it can be seen that a and C, only appear respectively in the combinations 
ah and c/C,.  It is useful to note that, except at rather small 2, the smallest c-eigenvalue 
at a given h is given by that branch of the eigenvalue which tends towards the 
Rayleigh free-surface wave speed cR (of the elastic half-space problem) as a -+ 00. On 
this Rayleigh branch, c is a monotonically decreasing function of h. At small Z, the 
c-eigenvalues of all the branches are rather large. Over the complete range of h, the 
Rayleigh wave speed cR is necessarily the lowest free-wave speed that the walls 
support; see Gad-el-Hak, Blackwelder & Riley (1984) for example. Hence, c, is 
bounded below by cR, which in the case of an incompressible wall is given 
approximately by O.9553Ct. Thus, according to the free-wave criterion UB, < cz, there 
is no Class B instability at any a when Urn < ( c ~ ) ~  = 0.9126Q/p. 

The static criterion for stability UB, < E?)/a is considered next. From earlier dis- 
cussions, it is clear that can be determined in two ways. It can be found by solving 
the static equilibrium problem mentioned in 84.2. This can be accomplished quite 
routinely using the method of Love's strain functions (see Fung 1965). Alternatively, 
as suggested by equation (4.16), we can calculate the ratio [b,,/33], in the limit as 
c + 0 for the dynamic-wave-propagation problem. The repeated use of De 1' Hopital 
rule is essential to overcome the singularities which result from the occurrences of 
coincident exponential solutions as c+ 0. Solution by either approaches is fairly 
straightforward but algebraically laborious. By either means we have 

a$') 2G(h* + coshB (2)) -- - 
a sinhh coshZ-h ' (4.22) 

which shows @')/a as a function of h, and it has a minimum value of 20. Thus, 
regardless of the value of a,  there is stability when 

U, < min{ static 2G , 0.91263.  
criterion free-wave 

criterion 

(4.23) 

It can immediately be seen in (4.23) that the static criterion is the critical one when 
the density of the wall p is low. The cross-over point occurs at p = 0.4563. For p = 1, 
the free-wave criterion is critical; but with high damping (so that v > 0), the 
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FIQURE 4. Comparison of the prediction of the static criterion and experimental static divergence 
results. -, static criterion. Gad-el-Hak et al. (1984); 0, h = 0.15; A, h = 0.24; V, h = 0.32; 0, 
h = 0.40; 0, h = 0.71. Hansen et al. (1980): +, h = 0.335. his in cm. 

associated instability can be suppressed (see equation (4.1 1 b)). For sufficiently 
damped viscoelastic walls, the important criterion tends to be the static criterion. 
However, this can also be resisted if C, > 0.7071U,. Thus, for p = 1, a sufficiently 
damped viscoelastic single-layer wall with C, > 0.7071 U ,  should not suffer from 
inviscid instability according to the stability criterion (4.23). A bound on U ,  identical 
to our static criterion was given by Hansen & Hunston (1974). However, their 
analysis was more intuitive than rigorous. The importance of the free-wave bound 
U ,  < cR for the suppression of compliance-related instability was in fact noted by 
Nonweiler (1962) in his study of the stability of laminar boundary-layer flow over 
a non-dissipative layer. Much more recently, the static and free-wave bounds on U ,  
given by (4.23) were also f h n d  by Fraser & Carpenter (1985) to give approximate 
critical velocities for inviscid flows over non-dissipative single-layer walls. As in 54.3 
the imposition of zero-dissipation greatly restricts the possible values of c which Class 
B marginal states can have. 

Finally we compare the predictions of the static and the free-wave criteria in the 
form of (4.17) (with a-dependence) with the experimentally observed occurrences of 
instabilities in turbulent boundary-layer flows over viscoelastic and nearly elastic 
single-layer compliant walls. The most comprehensive and well-documented sources 
of experimental results appear to be those of Gad-el-Hak et al. (1984) for static 
divergence instability (Class A) on viscoelastic layers and Gad-el-Hak (1986) for Class 
B instability on nearly elastic layers. Although the present criteria have been 
concocted in an essentially laminar-flow context, turbulent boundary-layer flows do 
in a fairly gross fashion share common features with thin laminar boundary-layer 
flow which is what they are in the mean. 

Figure 4 shows the boundary for stability based on the static criterion VZ, < Ep)/a 
and the data points based on the experimentally observed occurrences of static 
divergence instability in Gad-el-Hak et al. (1984) for viscoelastic layers. One of the 
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FIQURE 5. Comparison of the prediction of the free-wave criterion and the experimental Class B 
instability results. -, free-wave criterion. Gad-el-Hak (1968): V, h = 0.32; 0, h = 0.40; 0 ,  
h=0.48;  O , h = 0 . 6 5 ; t , h = 1 . 0 5 . h i s i n c m .  

data points was deduced from the reported results of Hansen et al. (1980). It can be 
seen that none of the instability data points falls in the region where the static 
criterion is satisfied. These unstable states were observed to have real phase velocities 
c, typically less than O.O5U,. The smallness of the phase velocities is consistent with 
the ‘static ’ nature of the present criterion. These experimentally observed 
instabilities are believed to be of the Class A type. Figure 5 shows the boundary for 
stability based on the free-wave criterion UZ, < cz and the data corresponding to 
Class B instability states observed by Gad-el-Hak (1986) on nearly elastic walls. The 
real phase velocities in this case fall mainly in the range of 0.25U, to 0.5U,. The 
low levels of material damping and higher real phase velocities suggest that the 
observed instabilities are predominantly of the Class B type. Again we note that there 
are no observed instability states that violate the free-wave criterion. The materials 
used in these experiments have densities p x 1. A comparison of the two criteria in 
figures 4 and 5 over the available ranges of A/h shown reveals that the free-wave 
criterion is the more critical condition. This seems to agree with figure 3 of Gad-el-Hak 
(1986) which shows that the nearly elastic walls, which can support the Class B waves, 
have lower onset speeds for instability. The Class B instabilities, which normally have 
higher phase velocities, did not seem to occur on the viscoelastic walls of Gad-el-Hak 
et al. (1984). This is probably because of the fairly high levels of damping present 
in those viscoelastic walls. The bounds provided by E?)/ol and cz generally fall with 
increasing ah. Thus an increase in wall thickness h has the effect of tightening the 
bounds on U ,  for the same range of a or A. This is consistent with the observations 
of Gad-el-Hak et al. (1984), Gad-el-Hak (1986) that the onset U ,  for both types of 
instability falls with increase in wall thickness. 

The criterion for stability given by (4.17) also applies to more complex compliant 
walls such as those composed of a number of layers of different viscoelastic layers; 
but the analyses required to implement the criterion will be correspondingly more 
complicated. 



290 K .  8. Ye0 and A .  P .  Dowling 

5. Conclusions 
It was shown that some of the most important theorems, concerning the temporal 

stability of inviscid parallel flows over rigid walls, could be extended in modified form 
to passive compliant walls. These results were stated as Propositions 1, 2 and 3 in 
$3. Proposition 1 shows that the real phase speed c, of an unstable wave mode must 
satisfy U ,  < c, < U ,  ; where U ,  is the larger of the maximum flow speed of the basic 
velocity profile and zero, and U, is the smaller of the minimum flow speed and zero. 
This result represents an extension of a similar result of Rayleigh. Proposition 2 states 
that the phase velocity c for an unstable wave mode lies within the semicircle having 
a radius +( U, - U,) centred at  +( U, + U,) on the real axis of the complex c-plane, 
and is a modified extension of the semicircle theorem of Howard (1961). For basic 
velocity distributions which vanish at  the wall, Proposition 3 states that the bound 
on the temporal amplification rates of unstable modes of Hariland (1953) also applies 
to passive compliant walls generally. 

The proofs of the proposition rest upon the realization that the coupling condition 
at the flow-wall interface is intimately related to the transfer of work from the flow 
to the wall. The class of passive compliant walls for which the propositions hold can 
broadly be identified as those which admit disturbance travelling-wave solutions 
similar to those of the inviscid flow regime. The generalization to a large class of 
passive compliant walls is made possible by adopting a variational-Lagrangian 
formulation of the essential dynamics of the walls which enables the work transferred 
from the flow to the wall to be represented in a very general manner as given in (2.8). 
In  this representation, the characteristics of the wall are determined by three 
real-valued integrals I, E and D. These are respectively related to the Kinetic energy 
integral, the Stored energy integral and the Dissipation integral of the disturbance 
mode in the wall. The proofs of the Propositions rely only on the positive-definite 
nature of these integrals. The first proposition, however, does not require E to be 
positive. 

An equation which governs the marginal stability of thin shear flows over general 
passive compliant walls was derived. From this equation, a set of criteria for the 
marginal instability of thin shear flows over compliant walls similar to those discussed 
by Benjamin (1963), in the context of tensioned membrane, was obtained. 

Based on the bounds on the real phase speed c, prescribed by Proposition 1, 
sufficient conditions for the marginal stability of thin shear flows over passive 
compliant walls were derived. The criteria for stability are of two types; a static 
criterion and a free-wave criterion. Bounds on the free-stream velocity of thin shear 
flows over bending plates on elastic foundation were obtained using the general 
criteria for marginal stability. These are identical to the critical velocities given in 
Carpenter & Garrad (1986) ; obtained under slightly more restrictive conditions. 
Similar bounds were also derived for single-layer viscoelastic walls. The prediction 
of stability given by the general criteria also shows good consistency with the 
experimental results of Gad-el-Hak et al. (1984), Gad-el-Hak (1986) and Hansen et 
al. (1980) for the observed occurrences of instabilities in turbulent flows over 
single-layer elastic and viscoelastic walls. 
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